Mutual statistics, braid group, and the fractional quantum Hall effect

نویسنده

  • Christopher Ting
چکیده

We show that the notion of mutual statistics arises naturally from the representation theory of the braid group over the multi-sheeted surface. A Hamiltonian which describes particles moving on the double-sheeted surface is proposed as a model for the bilayered fractional quantum Hall effect (FQHE) discovered recently. We explicitly show that the quasi-holes of the bilayered Hall fluid display fractional mutual statistics. A model for 3-dimensional FQHE using the multi-layered sample is suggested. e-mail: [email protected] † Part-time affiliation: Department of Physics, National University of Singapore

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filling factors and Braid group

We extract the Braid group structure of a recently derived hierarchy scheme for the filling factors proposed by us which related the Hausdorff dimension, h, to the statistics, ν, of the collective excitations in the context of the Fractional Quantum Hall Effect (FQHE).

متن کامل

Hierarchical Wave Functions and Fractional Statistics in Fractional Quantum Hall Effect on the Torus

One kind of hierarchical wave functions of Fractional Quantum Hall Effect (FQHE) on the torus are constructed. The multi-component nature of anyon wave functions and the degeneracy of FQHE on the torus are very clear reflected in this kind of wave functions. We also calculate the braid statistics of the quasiparticles in FQHE on the torus and show they fit to the picture of anyons interacting w...

متن کامل

Duality in Multi-layered Quantum Hall Systems

The braid group dynamics captures the fractional quantum Hall effect (FQHE) as a manifestation of puncture phase. When the dynamics is generalized for particles on a multi-sheeted surface, we obtain new tools which determine the fractional charges, the quantum statistics, and the filling factors of the multi-layered FQHE. A many-quasihole wavefunction is proposed for the bilayered samples. We a...

متن کامل

Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states

We study the non-abelian statistics characterizing systems where counter-propagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity-coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of ν = 1/m, while elect...

متن کامل

Spinning Braid Group Representation and the Fractional Quantum Hall Effect

The path integral approach to representing braid group is generalized for particles with spin. Introducing the notion of charged winding number in the super-plane, we represent the braid group generators as homotopically constrained Feynman kernels. In this framework, super Knizhnik-Zamolodchikov operators appear naturally in the Hamiltonian, suggesting the possibility of spinning nonabelian an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992